Creatinina, urea/BUN y eGFR* en el POC, contribuyen a acelerar los flujos de trabajo en Urgencias[1]
El reconocimiento rápido de la lesión renal aguda (LRA) reduce la mortalidad y las complicaciones en los pacientes [2]
Refuerce la atención en Urgencias con pruebas de la función renal en el POC
La lesión renal aguda (LRA) se presenta en el 13-18 % de todas las personas ingresadas en el hospital, y resulta vital realizar una intervención temprana para reducir la mortalidad y las complicaciones [2].
Acelere la toma de decisiones clínicas y reduzca la duración de la estancia para los pacientes que requieren una TC con contraste, todo ello con un analizador y a partir de una muestra en el POC [3].
Con el analizador de gases en sangre ABL90 FLEX PLUS, puede añadir creatinina, urea/BUN y eGFR a su panel de urgencias utilizando solo 65 μl de sangre total y obtener 19 resultados en 35 segundos.
19 parámetros
El analizador de gases en sangre ABL90 FLEX PLUS mide hasta 19 parámetros
Marcadores renales: Creatinina, urea/BUN y eGFR
Parámetros medidos
Potencial de hidrógeno
El grado de acidez o alcalinidad de cualquier líquido (incluida la sangre) es una función de su concentración de iones hidrógeno [H+], y el pH es simplemente una forma de expresar la actividad de los iones hidrógeno. La relación entre el pH y la concentración de iones hidrógeno se describe así:
pH = -log aH+
where aH+ representando aH+ la actividad de los iones hidrógeno.
El pH bajo se asocia con acidosis, y el pH alto, con alcalosis [1,2].
1. CLSI. Blood gas and pH analysis and related measurements; Approved Guidelines. CLSI document CA46-A2, 29, 8. Clinical and Laboratory Standards Institute, 940 West Valley Road, Suite 1400, Wayne, Pennsylvania 19087-1898 USA, 2009
2. Acute care testing handbook. Radiometer Medical ApS, 2700 Brønshøj, Denmark, 2014. As accessed on https://www.radiometer.com/en/knowledge-center/handbooks/acute-care-testing-handbook
Presión parcial de dióxido de carbono
El dióxido de carbono (CO2) es un gas ácido; la cantidad de CO2 en la sangre se controla en gran medida por la velocidad y profundidad de la respiración o ventilación. La pCO2 es la presión parcial de CO2 en sangre. Es una medida de la presión ejercida por esa pequeña porción (~5 %) de CO2 total que permanece en estado gaseoso, disuelto en el plasma sanguíneo. La pCO2 es el componente respiratorio del equilibrio ácido-base y refleja la idoneidad de la ventilación pulmonar. La gravedad de un fallo ventilatorio, así como la cronicidad, pueden valorarse a partir de los cambios que lo acompañan en el estado ácido-base [1,2].
- Higgins C. Parameters that reflect the carbon dioxide content of blood. www.acutecaretesting.org Oct 2008.
- Acute care testing handbook. Radiometer Medical ApS, 2700 Brønshøj, Denmark, 2014
Presión parcial de oxígeno
La cantidad de oxígeno en la sangre se controla mediante diversas variables como la ventilación/perfusión. La pO2 es la presión parcial del oxígeno en una fase gaseosa en equilibrio con la sangre. La pO2 únicamente refleja una pequeña fracción (1–2 %) del oxígeno total en la sangre que se disuelve en el plasma sanguíneo [1]. El 98–99 % restante del oxígeno presente en la sangre está unido a la hemoglobina en los eritrocitos. La pO2 refleja principalmente la captación de oxígeno en los pulmones. [2]
1. Wettstein R, Wilkins R. Interpretation of blood gases. In: Clinical assessment in respiratory care, 6th ed. St. Louis: Mosby, 2010.
2. Acute care testing handbook. Radiometer Medical ApS, 2700 Brønshøj, Denmark, 2014. As accessed on https://www.radiometer.com/en/knowledge-center/handbooks/acute-care-testing-handbook.
Glucosa
La glucosa, el carbohidrato más abundante en el metabolismo humano, sirve como fuente principal de energía intracelular (ver lactato). La glucosa se deriva principalmente de los carbohidratos dietéticos, pero también se produce (principalmente en el hígado y los riñones) a través del proceso anabólico de gluconeogénesis, y de la descomposición del glucógeno (glucogenólisis). Esta glucosa producida de forma endógena ayuda a mantener la concentración de glucosa en sangre dentro de los límites normales cuando no se dispone de glucosa derivada de la dieta; por ejemplo, entre comidas o durante períodos de inanición. [1].
1. Acute care testing handbook. Radiometer Medical ApS, 2700 Brønshøj, Denmark, 2014. As accessed on https://www.radiometer.com/en/knowledge-center/handbooks/acute-care-testing-handbook.
Lactato
El lactato, el anión que resulta de la disociación del ácido láctico, es un metabolito intracelular de la glucosa. Lo producen células musculares esqueléticas, glóbulos rojos (eritrocitos), el cerebro, y otros tejidos durante la producción de energía anaeróbica (glucólisis). El lactato se forma en el líquido intracelular a partir de piruvato; la reacción la cataliza la enzima lactato deshidrogenasa (LDH) [1,2].
1. Robergs RA, Ghiasvand F, Parker D. Biochemistry of exercise-induced metabolic acidosis. Am J Physiol Regul Integr Comp Physiol 2004; 287: R502-16.
2. Acute care testing handbook. Radiometer Medical ApS, 2700 Brønshøj, Denmark, 2014. As accessed on https://www.radiometer.com/en/knowledge-center/handbooks/acute-care-testing-handbook.
Creatinina
La creatinina es un producto de desecho endógeno del metabolismo muscular derivado de la creatina, una molécula de gran importancia para la producción de energía dentro de las células musculares. La creatinina se elimina del cuerpo en la orina y su concentración en la sangre refleja la filtración glomerular y, por lo tanto, la función renal. [1]
1. Acute care testing handbook. Radiometer Medical ApS, 2700 Brønshøj, Denmark, 2014. As accessed on https://www.radiometer.com/en/knowledge-center/handbooks/acute-care-testing-handbook.
Urea
La urea (fórmula molecular CO(NH2)2) es el principal producto de desecho nitrogenado del catabolismo de proteínas, que se elimina del cuerpo en la orina. Es el componente orgánico más abundante de la orina. La urea se transporta en sangre desde el hígado hasta los riñones, donde se filtra de la sangre y se excreta en la orina. La insuficiencia renal se asocia con la reducción de la excreción de urea en la orina y el consiguiente aumento de la concentración de urea en sangre (plasma/suero). [1]
1. Acute care testing handbook. Radiometer Medical ApS, 2700 Brønshøj, Denmark, 2014. As accessed on https://www.radiometer.com/en/knowledge-center/handbooks/acute-care-testing-handbook.
Calcio
El ion cálcico (Ca2+) es uno de los cationes más frecuentes en el cuerpo, donde aproximadamente el 1 % está presente en el líquido extracelular de la sangre. El Ca2+ desempeña un papel vital para la mineralización ósea y diversos procesos celulares como la contractilidad del corazón y la musculatura esquelética, la transmisión neuromuscular, la secreción hormonal y la acción en diversas reacciones enzimáticas como, por ejemplo, la coagulación de la sangre. [1].
1. Acute care testing handbook. Radiometer Medical ApS, 2700 Brønshøj, Denmark, 2014. As accessed on https://www.radiometer.com/en/knowledge-center/handbooks/acute-care-testing-handbook.
Chloride
Chloride (Cl-) is the major anion in the extracellular fluid and one of the most important anions in blood. The main function of Cl- is to maintain osmotic pressure, fluid balance, muscular activity, ionic neutrality in plasma, and help elucidate the cause of acid-base disturbances.
Potasio
El potasio (K+) es el catión principal en el fluido intracelular, donde tiene una concentración 25 - 37 veces mayor (∼150 mmol/L en células de tejido, ∼105 mmol/L en eritrocitos) que en el líquido extracelular (∼4 mmol/L) [1, 2]. El K+ realiza varias funciones vitales en el cuerpo como la regulación de la excitabilidad neuromuscular, del ritmo cardíaco y del volumen intracelular y extracelular, así como del estado ácido-base. [3]
1. Burtis CA, Ashwood ER, Bruns DE. Tietz textbook of clinical chemistry and molecular diagnostics. 5th ed. St. Louis: Saunders Elsevier, 2012.
2. Engquist A. Fluids/Electrolytes/Nutrition. 1st ed. Copenhagen: Munksgaard, 1985.
3. Acute care testing handbook. Radiometer Medical ApS, 2700 Brønshøj, Denmark, 2014. As accessed on https://www.radiometer.com/en/knowledge-center/handbooks/acute-care-testing-handbook.
Sodio
El sodio (Na+) es el catión dominante en el líquido extracelular, donde presenta una concentración 14 veces mayor (∼140 mmol/L) que en el fluido intracelular (∼10 mmol/L). El Na+ contribuye de manera importante a la osmolalidad del líquido extracelular y su función principal es en gran parte el control y regulación del equilibrio hídrico, así como el mantenimiento de la presión arterial. El Na+ también es importante para transmitir impulsos nerviosos y activar la concreción muscular. [1]
1. Acute care testing handbook. Radiometer Medical ApS, 2700 Brønshøj, Denmark, 2014. As accessed on https://www.radiometer.com/en/knowledge-center/handbooks/acute-care-testing-handbook.
Carboxihemoglobina
FCOHb es la fracción de hemoglobina total (ctHb) que está presente como carboxihemoglobina (COHb). Por convención, la fracción se expresa como un porcentaje (%). [1]
En el rango de 0–60 % la COHb en sangre arterial (COHb(a)) y venosa (COHb(v)) es similar; es decir, se puede analizar tanto sangre venosa como arterial [1]. En la mayoría de textos médicos la FCOHb(a) se denomina simplemente COHb. [2]
1. Lopez DM, Weingarten-Arams JS, Singer LP, Conway EE Jr. Relationship between arterial, mixed venous and internal jugular carboxyhemoglobin concentrations at low, medium and high concentrations in a piglet model of carbon monoxide toxicity. Crit Care Med 2000; 28: 1998-2001.
2. Acute care testing handbook. Radiometer Medical ApS, 2700 Brønshøj, Denmark, 2014. As accessed on https://www.radiometer.com/en/knowledge-center/handbooks/acute-care-testing-handbook.
Bilirrubina
La bilirrubina es el producto final amarillo resultante de la degradación del grupo hemo de la hemoglobina. Se transporta en la sangre desde su lugar de producción (el sistema reticuloendotelial) al hígado, donde se biotransforma antes de su excreción en la bilis. La ictericia, la decoloración amarilla patológica de la piel, se debe a una acumulación anormal de bilirrubina en los tejidos, y siempre se asocia con una concentración sanguínea elevada de bilirrubina (hiperbilirrubinemia). [1]
1. Acute care testing handbook. Radiometer Medical ApS, 2700 Brønshøj, Denmark, 2014. As accessed on https://www.radiometer.com/en/knowledge-center/handbooks/acute-care-testing-handbook.
Hemoglobina total
La concentración de hemoglobina total (ctHb) en la sangre incluye oxihemoglobina (cO2Hb), desoxihemoglobina (cHHb), así como las especies de hemoglobina disfuncional que son incapaces de unir oxígeno:
carboxihemoglobina (cCOHb) (ver COHb), metahemoglobina (cMetHb) (ver MetHb) y sulfohemoglobina (cSulfHb).
Asi:
ctHb = cO2Hb + cHHb + cCOHb + cMetHb + cSulfHb
La SulfHb no está incluida en la c tHb notificada en la mayoría de los oxímetros por ser poco habitual. [1]
1. Acute care testing handbook. Radiometer Medical ApS, 2700 Brønshøj, Denmark, 2014. As accessed on https://www.radiometer.com/en/knowledge-center/handbooks/acute-care-testing-handbook.
Fracción de hemoglobina fetal
FHbF en hemoglobina total en sangre. [1]
1. Acute care testing handbook. Radiometer Medical ApS, 2700 Brønshøj, Denmark, 2014. As accessed on https://www.radiometer.com/en/knowledge-center/handbooks/acute-care-testing-handbook.
Fracción de desoxihemoglobina
FHHb en hemoglobina total en sangre. [1]
1. Acute care testing handbook. Radiometer Medical ApS, 2700 Brønshøj, Denmark, 2014. As accessed on https://www.radiometer.com/en/knowledge-center/handbooks/acute-care-testing-handbook.
Metahemoglobina
FMetHb es la fracción de hemoglobina total (ctHb) que está presente como metahemoglobina (MetHb). Por convención, la fracción se expresa como un porcentaje (%) [1]. En la mayoría de los cuadros de texto médicos la MetHb(a) se denomina simplemente metahemoglobina (MetHb). [2]
1. CLSI. Blood gas and pH analysis and related measurements; Approved Guidelines. CLSI document CA46-A2, 29, 8. Clinical and Laboratory Standards Institute, 940 West Valley Road, Suite 1400, Wayne, Pennsylvania 19087-1898 USA, 2009.
2. Acute care testing handbook. Radiometer Medical ApS, 2700 Brønshøj, Denmark, 2014. As accessed on https://www.radiometer.com/en/knowledge-center/handbooks/acute-care-testing-handbook.
Saturación de oxígeno
La saturación de oxígeno (sO2) es la relación entre la concentración de oxihemoglobina y la concentración de hemoglobina funcional (es decir, oxihemoglobina (O2Hb) y desoxihemoglobina (HHb) capaz de transportar oxígeno [1].
La sO2 refleja la utilización de la capacidad de transporte de oxígeno disponible actualmente. En la sangre arterial un 98–99 % de oxígeno se transporta en eritrocitos unidos a la hemoglobina. El 1-2 % restante del oxígeno transportado en sangre se disuelve en el plasma sanguíneo: esta es la porción notificada como presión parcial de oxígeno (pO2) [2,3].
1. CLSI. Blood gas and pH analysis and related measurements; Approved Guidelines. CLSI document CA46-A2, 29, 8. Clinical and Laboratory Standards Institute, 940 West Valley Road, Suite 1400, Wayne, Pennsylvania 19087-1898 USA, 2009.
2. Higgins C. Parameters that reflect the carbon dioxide content of blood. www.acutecaretesting.org Oct 2008.
Fracción de oxihemoglobina
FO2Hb en hemoglobina total en sangre. [1]
1. Acute care testing handbook. Radiometer Medical ApS, 2700 Brønshøj, Denmark, 2014. As accessed on https://www.radiometer.com/en/knowledge-center/handbooks/acute-care-testing-handbook.
*se calcula la eGFR
Diagnóstico y tratamiento más rápidos con resultados de creatinina, urea/BUN y eGFR para pacientes que requieren una TC con contraste [3]
- ✓La identificación temprana del riesgo de LRA favorece una derivación clínica más rápida [4].
- ✓La idoneidad para el uso de contrastes en pruebas de imagen se decide "in situ", utilizando la GFR estimada en tiempo real [2].
- ✓Los fármacos nefrotóxicos son prescritos con confianza, guiados por una función renal conocida [3,5].
- ✓La deshidratación se confirma rápidamente, utilizando la urea para respaldar el juicio clínico [6].
Después de dos minutos ya podemos darle al paciente un medio de contraste durante la TC y conocemos los niveles de creatinina para poder evaluar mejor el riesgo de posibles complicaciones.
- Axel Plessmann, director del servicio de Urgencias, Grupo de hospitales de la Cruz Roja Alemana (usuario del ABL90 FLEX PLUS)
Haga clic aquí para renovar el consentimiento
Descubra cómo el analizador de gases en sangre ABL90 FLEX PLUS con resultados de creatinina, urea/BUN y eGFR le permite actuar con rapidez y confianza
La creatinina en el POC mejora el flujo de trabajo en Urgencias
Los estudios sugieren que la creatinina y la urea/BUN en el POC pueden ayudar a mejorar los flujos de trabajo en Urgencias.
Interferencia mínima en creatinina
La medición de la creatinina en el analizador de gases en sangre ABL90 FLEX PLUS muestra una interferencia mínima.
Excelente rendimiento frente a los métodos de laboratorio habituales
La medición de creatinina en el analizador de gases en sangre ABL90 FLEX PLUS muestra una excelente concordancia en comparación con 4 métodos de laboratorio.
Analizador de gases en sangre ABL90 FLEX PLUS
- Análisis rápido
- Resultados fiables
- Manejo y mantenimiento sencillos
Analizador de gases en sangre ABL90 FLEX PLUS
Soluciones para pruebas de «point of care» en el servicio de Urgencias
Artículos científicos en acutecaretesting.org
Preguntas frecuentes: Pruebas de la función renal en el «point of care» (creatinina, urea y eGFR)
¿Puede realmente el analizador de gases en sangre ABL90 FLEX PLUS proporcionar resultados con calidad de laboratorio en 35 segundos?
Sí, puede. Una evaluación de la investigación científica confirma que el ensayo enzimático de creatinina ABL90 FLEX PLUS de Radiometer es al menos tan adecuado como una técnica enzimática convencional de química clínica para el diagnóstico rutinario y urgente de enfermedades renales [7].
¿Añadir los parámetros creatinina y urea al analizador de gases en sangre permite tomar decisiones diagnósticas más rápidas en el servicio de urgencias?
En el servicio de Urgencias, las decisiones diagnósticas iniciales se basan en un panel de diferentes parámetros, incluida la creatinina/urea. Dado que la creatinina y la urea se utilizan para determinadas estratificaciones de riesgo específicas y diagnósticos diferenciales, la disponibilidad inmediata de estos parámetros en el POC permitirá tomar decisiones más rápidas que si los resultados de las pruebas se proporcionaran desde un laboratorio central.
¿Cómo puede el ABL90 FLEX PLUS ayudar a mejorar el flujo de pacientes en el servicio de Urgencias ofreciendo más parámetros?
Un estudio realizado por Jiménez reveló que una estrategia basada en POCT mejora el flujo de pacientes en el servicio de Urgencias y es más eficaz y menos costosa que la atención estándar. En el estudio, los pacientes de urgencias se dividieron en dos grupos diferentes: el grupo de intervención (análisis realizados en analizadores POCT en el servicio de urgencias: gases en sangre, panel metabólico básico, hematología, orina, coagulación) o el grupo de control (laboratorio central). Se produjo una reducción significativa en la duración de la estancia de 88,50 min, del tiempo hasta la decisión de ingreso o alta de 89,00 min y del tiempo de respuesta del laboratorio de 67,11 min. No se observó ningún aumento en las readmisiones. También se produjo una reducción significativa del coste asociado al utilizar el enfoque POCT, en comparación con la estrategia utilizada en la atención habitual. [8]
¿En qué situaciones es más útil el análisis en el «point of care» de la creatinina, la urea y la eGFR en Urgencias?
Hay varias aplicaciones. El reconocimiento de la LRA, la confirmación de la elegibilidad para estudios con contraste, la valoración del aclaramiento renal y la evaluación del estado renal antes de administrar fármacos nefrotóxicos son algunos de los más habituales. Esto garantiza decisiones rápidas y fundamentadas sobre la atención al paciente, así como una mayor eficiencia en el servicio de Urgencias. Otros usos incluyen:
- Se contribuye a identificar si la causa de la LRA es prerrenal, intrínseca o posrrenal [9,10,11].
- Se ayuda a identificar la enfermedad renal crónica (ERC) no diagnosticada [12].
- Evaluación de la deshidratación del paciente [13].
- Evaluación de la gravedad de la neumonía (p. e., CURB-65) [14,15].
- Ayuda a evaluar la hemorragias digestiva alta (p. ej., Escala de Glasgow-Blatchford) [16,17,18].
- Apoyo a la valoración de la pancreatitis aguda. (BUN/creatinina asociada con la gravedad) [19,20].
- Ayudar a reconocer la sepsis. (Para el componente renal) [21,22,23].
¿Qué otros parámetros se miden en el analizador de gases en sangre ABL90 FLEX PLUS?
19 parámetros rápidos, incluidos gases en sangre, metabolitos, electrólitos, hemoglobina y renales. Estos se miden en el analizador de gases en sangre ABL90 FLEX PLUS a partir de una muestra, proporcionando todos los resultados en 35 segundos con 65 μl de sangre. La lista completa de parámetros medidos es:
Gases en sangre: pH, pCO2, pO2
Metabolitos: cLac, cGlu,
Electrólitos: cNa+, cK+, cCa2+, cCl-
Hemoglobina: FCOHb, ctHb, FHbF, FHHB, FMetHb, sO2, FO2Hb, ctBil
Renal: cCrea, cUrea/BUN, eGFR(calc)
Referencias
2. NICE National Institute for Health and Care Excellence. Acute kidney injury: prevention, detection and management. NICE guideline 2019. Overview | Acute kidney injury: prevention, detection and management | Guidance | NICE. Accessed Nov 2025 Polavarapu
3. European Society of Urogenital Radiology. ESUR Guidelines on Contrast Agents version 10.0. ESUR GUIDELINES ON CONTRAST AGENTS | esur.org. Accessed Nov. 2025
4. Polavarapu M, Groner K, Craig BA, Eilman V, Costinas S. Using Point-of-Care Creatinine Testing as a Vehicle to Expedite Patient Care. Annals of Emergency Medicine 2020; 76, 4S.
5. Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney inter., Suppl. 2012; 2: 1–138.
6. Gianfranco Sanson, Ilaria Marzinotto, Daniela De Matteis, Giuliano Boscutti, Rocco Barazzoni, Michela Zanett; Impaired hydration status in acutely admitted older patients: prevalence and impact on mortality. Published by Oxford University Press on behalf of the British Geriatrics Society. Age and Ageing 2021; 50: 1151–1158 https://doi.org/10.1093/ageing/afaa264 Published electronically 16 December 2020
7. Salvagno, G. L., Pucci, M., Demonte, D., Gelati, M., & Lippi, G. (2019). Analytical evaluation of Radiometer ABL90 FLEX PLUS enzymatic creatinine assay. Journal of Laboratory and Precision Medicine, 4, 26. https://doi.org/10.21037/jlpm.2019.07.01
8. Jimenez-Barragan, M., Rodriguez-Oliva, M., et al. Emergency severity level-3 patient flow based on point-of-care testing improves patient outcomes. 2021; 144-151. Clin Chim Acta. https://doi.org/10.1016/j.cca.2021.09.011
9. James Taylor; Renal system 3: categorizing, assessing and managing acute kidney injury; Nursing Times [online] April 2003 / vol 119 issue 4
10. Michael G Mercado MD, Dustin K Smith DO and Esther L Guard DO; Acute Kidney Injury: Diagnosis and Management; American Family Physician; December 1, 2009, vol 100, number 11
11. Chris Nickson; Urea-Creatinine Ratio, Life in the Fastlane, July 28 2024; https://litfl.com/urea-creatinine-ratio/
12. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. 2024;105(4S):S117-S314. doi:10.1016/j.kint.2023.10.018
13. Trainor JL, Glaser NS, Tzimenatos L, Stoner MJ, Brown KM, McManemy JK, Schunk JE, Quayle KS, Nigrovic LE, Rewers A, Myers SR, Bennett JE, Kwok MY, Olsen CS, Casper TC, Ghetti S, Kuppermann N; Pediatric Emergency Care Applied Research Network (PECARN) FLUID Study Group. Clinical and Laboratory Predictors of Dehydration Severity in Children With Diabetic Ketoacidosis. Ann Emerg Med. 2023 Aug;82(2):167-178. doi: 10.1016/j.annemergmed.2023.01.001. Epub 2023 Apr 5. PMID: 37024382; PMCID: PMC10523885.
14. Lim, W. S., Van der Eerden, M. M., Laing, R., Boersma, W. G., Karalus, N., Town, G. I., ... & Macfarlane, J. (2003). Defining community acquired pneumonia severity on presentation to hospital: an international derivation and validation study. Thorax, 58(5), 377-382.
15. National Institute for Health and Care Excellence. Pneumonia in adults: diagnosis and management. London: ICE; 2023. CG191. https://www.nice.org.uk/guidance/cg191 (accessed 18 Mar 2025)
16. Kumar NL, Claggett BL, Cohen AJ, Nayor J, Saltzman JR. Association between an increase in blood urea nitrogen at 24 hours and worse outcomes in acute nonvariceal upper GI bleeding. Gastrointest Endosc. 2017 Dec;86(6):1022-1027.e1. doi: 10.1016/j.gie.2017.03.1533. Epub 2017 Apr 2. PMID: 28377105.
17. Richards, Robert J. M.D.; Donica, Mary Beth M.D.; Grayer, David M.D.. Can the Blood Urea Nitrogen/Creatinine Ratio Distinguish Upper From Lower Gastrointestinal Bleeding?. Journal of Clinical Gastroenterology 12(5):p 500-504, October 1990
18. Blatchford O, Murray WR, Blatchford M. A risk score to predict need for treatment for upper-gastrointestinal haemorrhage. Lancet. 2000 Oct 14;356(9238):1318-21. doi: 10.1016/S0140-6736(00)02816-6. PMID: 11073021
19. Banks PA, Bollen TL, Dervenis C, et al. Classification of acute pancreatitis—2012: revision of the Atlanta classification and definitions by international consensus. Gut. 2012;62(1):102-111. doi:10.1136/gutjnl-2012-302779
20. Mederos MA, Reber HA, Girgis MD. Acute Pancreatitis: A Review. JAMA. 2021 Jan 26;325(4):382-390. doi: 10.1001/jama.2020.20317. Erratum in: JAMA. 2021 Jun 15;325(23):2405. doi: 10.1001/jama.2021.5789. PMID: 33496779.
21. Manrique-Caballero CL, Del Rio-Pertuz G, Gomez H. Sepsis-Associated Acute Kidney Injury. Crit Care Clin. 2021 Apr;37(2):279-301. doi: 10.1016/j.ccc.2020.11.010. Epub 2021 Feb 13. PMID: 33752856; PMCID: PMC7995616.
22. Gounden V, Bhatt H, Jialal I. Renal Function Tests. [Updated 2024 Jul 27]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK507821/
23. National Institute for Health and Care Excellence . Sepsis: recognition, diagnosis and early management. London: ICE; 2025. NG51. https://www.nice.org.uk/guidance/ng51 (accessed 18 Mar 2025)
En este sitio web se utilizan cookies
Uso de cookiesIntroduzca una dirección de correo electrónico válida
En breve le enviaremos una invitación por correo electrónico para que inicie sesión con Microsoft Azure AD.
Parece que su dirección de correo electrónico no está registrada con nosotros
Por favor haga click en "Comenzar" en el email para completar el proceso de registro
Radiometer utilizaMicrosoft AZURE Active Directory para proporcionar acceso seguro a documentos, recursos y otros servicios en nuestro portal de clientes para clientes y socios.
Si su organización ya está utilizando AZURE AD, puede emplear las mismas credenciales para acceder al portal de clientes de Radiometer.
Beneficios clave
- Permite el uso de credenciales de Active Directory ya existentes Inicio de sesión único Uso de las mismas credenciales para acceder a servicios futuros
Solicitar acceso
Recibirá una invitación por correo electrónico para acceder a nuestros servicios cuando su solicitud haya sido aprobada.
Cuando acepte la invitación y su organización ya esté utilizando AZURE AD, puede utilizar las mismas credenciales para acceder al portal de clientes de Radiometer. En caso contrario, se le enviará por email una contraseña de un solo uso.